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We show that, for neutral systems of particles of arbitrary charges in two 
dimensions, with hard cores, coefficients of the Mayer series for the pressure 
exist in the thermodynamic limit below certain thresholds in the temperature. 
Our methods apply also to correlation functions and yield bounds on the 
asymptotic behavior of their Mayer coefficients. 
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1. I N T R O D U C T I O N  

In this paper we study the thermodynamic limit of the coefficients of the 
Mayer series for the pressure--or, more generally, for correlation 
functions--for neutral systems of particles in two dimensions, interacting 
by Coulomb forces, and with a hard core to prevent ultraviolet 
,catastrophe. This problem (for the pressure) has been discussed thoroughly 
in Ref. 1 for the case of a system of two species of opposite charges, and 
that discussion would extend immediately to the case of a charge-sym- 
metric system. The authors find a simple behavior governed by the value of 
the parameter F =  fie 2, with fi the inverse temperature and e the charge: (i) 
all coefficients appear to diverge for F~< 2; (ii) there is a series of thresholds 
between F =  2 and F =  4, such that above the Nth threshold F x = 4 -  2IN, 
the coefficient of order 2N is finite; (iii) all coefficients are finite above 
F =  4, the Kosterlitz-Thouless transition point. These results have recently 
been extended (2) to show that the series is in fact asymptotic to the 
pressure, above slightly higher thresholds, to the order in which the coef- 
ficients are finite. 
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In the current work we remove the restriction of charge symmetry, 
allowing an arbitrary collection of species of charged particles which can 
form neutral systems. (We adopt some notation from Lieb and Lebowitz (3) 
for such systems.) Our general approach is also somewhat different from 
that of Ref. 1, which was characterized by the decomposition of the 
Coulomb interaction as an infinite sum of short-range interactions on 
various scales, the use of the sine-Gordon transformation, and the treat- 
ment of the neutral system as a limit of nonneutral systems. Here we study 
directly in configuration space the integrals which define the Mayer coef- 
ficients. In either case, the problem is to exhibit the two levels of can- 
cellations which are necessary for finiteness. At the first level, cancellations 
take place between various terms in the logarithm of the partition function, 
a familiar mechanism which in Ref. 1 leads to the usual reorganization of 
the series into a sum over connected graphs, but for us must be handled 
somewhat differently since we work directly with the long-range interac- 
tion. A second level of cancellations is also necessary in these Coulomb 
systems. In Ref. 1 they are produced when the contribution from a fixed 
configuration of particles is summed over all possible charge assignments 
to these particles. This does not work in the non-charge-symmetric case 
considered here (the difference is not simply one of methodology). We 
instead improve the falloff in the interaction between neutral clusters by 
averaging over their orientations, although this leads to technical dif- 
ficulties as rotating clusters hit the boundary of the box within which the 
system is confined. 

We find thresholds in the temperature, similar to those of Ref. 1, 
bellow which the coefficients in the Mayer series are finite. These may be 
characterized as follows: the coefficient of the pressure which corresponds 
to a specific collection of particles is finite if, for any decomposition of the 
collection into nonneutral subcollections, the modified canonical partition 
function defined by integrating only over configurations in which these 
clusters have bounded size, and in which all intercluster distances are the 
same order of magnitude, is finite. (In the charge symmetric case (1) this 
finiteness is guaranteed by finiteness when all subcollections consist of a 
single particle, leading to the threshholds described above.) Our methods 
also apply to correlation functions and lead to bounds on the asymptotic 
behavior in configuration space of the coefficients of their Mayer series, as 
we discuss briefly in Section 7. 

2. T H E  M O D E L  

We consider two-dimensional systems assembled from S species of 
particles, having nonzero charges e 1 ..... e s ,  activities z 1 ..... z s ,  and hard core 
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diameter d, and interacting via the Coulomb potential. (Inclusion of 
neutral particles with hard cores or of distinct diameters for different 
species would cause minor technical difficulties; see the remark following 
Lemma 3.6.) A system with N ~ particles of species s has charge 
N. e = Z ,N 'e  s. We treat only neutral systems (N '  e = 0) and hence assume 
that the charges are such that neutral systems can form which contain any 
given species. We write N =  52,N s and for each N choose once and for all 
an indexing of the particles in the system by IN = { 1 ..... N}, writing e+, z/, 
and xi for the charge, activity, and position of the ith particle. 

For fixed N and A c I N  let e(A)(=eN(A))=~2++~ e/. The energy of 
the particles indexed by A is 

i,j~A 
i< j  

By an electrostatic argument, <4/for e(A)= O, 

gnu> - b  I/I  (2.1) 

for some constant b, as long as ]x~-x/] ~> d. Set 

uN(A; x) = exp[ --/~UN(A; x)]  

= a(~/2lZ'~Ae~ l ~  ]Xi-- x+l ~e'<' 
i,]+ A 
i < ] 

Then the grand canonical partition function for neutral systems in the 
volume A is 

ZN fA ,.~(/~, Z; A ) = 2 ~ b t N ( I N ; X ) ) ~ { l x i - r i [ ) d } ( X ) d X l " ' d X N  (2.2) 
N >/0 ~/ 

e . N = 0  

where the series converges for small activities by the stability condition 
(2.1). Since a change in length scale a ~ 2 a  corresponds to a change in 
activities zi--* )~--[~e~/2Zi, we may without loss of generality set a = 1 in the 
sequel. 

We call a set A c I N neutral if e(A) = 0, and a partition ~ of IN neutral 
if e(P)=0 for each set P e ~ .  Then we have the following: 

k e m m a  2.1. The grand canonical pressure in A has series expan- 
sion 

~(/3, z ; A ) ~  IA1-1 log Z(fl, z ;A) 

= 2 
N>~0 

e - N = 0  

rA]-l fAuFN(fl, x) dx l . . . dx  n (2.3) 
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with 

and 

FN(/3, X ) = ~  (-- 1)l~l-1(1~ I -- 1)! f~(/3, X) ~ ( X )  (2.4) 

f#(f l ,  X ) =  H UN(P' X) (2.5) 
P~# 

r  H H x{ix~ x~l>~a}(x) (2.6) 
Pe~ i,j~P 

iv~j 

Here the sum is over all neutral partitions ~.  

Proof. From (2.2), 

l o g S =  ~ ( - - l l k -~ (k - -1 ) !  
k=l  

Z'Y~Ni 

k! N I ! " ' N k !  NI,...,Nk 
Ni~>O;e-N ~0 

k 
x I H UN~(IN~, x) dx (2.7) 

i=1 

Set N = Z~= ~ Ni. Then (N~-N. Nk) counts the number of ordered partitions of 
I u into k sets P~,..., Pk, with Pi containing N~ particles of species s, and 
thus (2.7) may be rewritten as a sum over ordered partitions. The factor 
(k!) 1 converts this into a sum over (unordered) partitions. | 

We can now state our main result on the existence of the ther- 
modynamic limit for the coefficients of the pressure. 

T h e o r e m  2.2. Fix N. Suppose that/3 is sufficiently large that 

A~,e(A)~O 

where the supremum is over all partitions @ of L Then if Ap 
radius P, 

~N(fl)-- p++lim IA,,I--1 f ANFN(/3 ' X) dx 

exists. 

Remark 2.3. 

(2.8) 

is a ball of 

(2.9) 

If there exist only two species of particle, with charges 
+_e, then (2.8) is equivalent to 

 2,0, 
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which is the convergence condition of Ref. 1. Moreover, if all charges e s are 
integer multiples of some fundamental charge e, (2.10) is sufficient for (2.8); 
in particular, all coefficients ~N(/~) exist for fle2>~ 4. 

We close this section with a discussion of the origin of the condition 
(2.8) and a broad outline of the proof of the theorem. Let us replace the 
limit (2.9) with the formally equivalent integral 

f(~2)N ~ FN(/~' X) dx2."dxrl (2.11) 

and consider only the ~ = {I} contribution to F N in (2.11). Let ~ be a par- 
tition of I; we integrate (2.11) over configurations in which particles 
indexed by each subset A ~ ~ form a cluster of bounded size, and in which 
all intercluster distances are order of magnitude R. The integral looks like 

f oo R(~/2)ZA'~e(A)e(B)R2(I~ 11) dR 
R 

which converges if 

A ~  

Now (2.12) can certainly not hold at any/~ for all ~ - - i n  particular, not for 
neutral partitions. To show that in fact the weaker condition (2.8) suffices 
for the thermodynamic limit [i.e., at least formally, for the convergence of 
(2.11)] we will proceed as follows: 

(i) Inclusion of all terms in ~2.~ in (2.1) yields cancellations (as for 
the usual Mayer expansion), which provide falloff in FN(/3, x) as neutral 
clusters separate. 

(ii) Even so, (2.11) is not absolutely convergent, but rather exists for 
an appropriate order of integration in which we first average over orien- 
tations of neutral clusters, leaving an absolutely convergent integration 
over the remaining coordinates. 

(iii) To display the cancellations of (i) and (ii) we subdivide con- 
figuration space into regions within which the particles are grouped 
hierarchically into well-defined clusters. 

(iv) Finally, we must treat the actual thermodynamic limit (2.9) 
rather than the formally equivalent integral (2.11); the boundary of A 
causes difficulty by interfering with the averaging over cluster orientation. 
The solution is the further subdivision of configuration space into sub- 
regions; within a given subregion each cluster either may be averaged over 
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orientations or is confined to lie near the boundary. The contribution of 
any subregion involving a cluster of the latter type vanishes in the ther- 
modynamic limit. It is at this point that we need the box A to be a disk. 

The details of the argument are presented in Sections 3-6. In Section 3 
we give the decomposition of configuration space into regions and sub- 
regigns as discussed above. In Section 4 we state two basic lemmas 
estimating, respectively, the integrand within any subregion and the 
integral over that subregion, and from these give the proof of Theorem 2.2. 
The lemmas are proved in Sections 5 and 6. 

3. C L U S T E R S  

In this section we fix N > 0 and subdivide the configuration space of N 
particles into regions in which the particles are grouped hierarchically into 
clusters. Our definition is somewhat arbitrary since it depends on the order 
in the index set I =  {1 ..... N}; in particular, if A c I ,  we let iA denote the 
smallest element of A and treat the particle indexed by iA as the center of 
the cluster indexed by A. 

D e f i n i t i o n  3.1. (a) A hierarchy 24 ~ is a collection of subsets of I 
called clusters such that (i) I e  J((, (ii) if A e ~ f ,  then [AI >~2, and (iii) if 
A, Be;lq ~, then A c B ,  B c A ,  or AnB=~J .  

(b) If ~ is a hierarchy we define ~ = ~ f ~ u { { 1 } , . . . , { N } }  
(corresponding to the treatment of a single particle as a trivial cluster). 

(c) For  AeJ4  '~ we define ~0(A) to be the family of maximal proper 
subsets of A in ~1(~, A ,  e ~o(A) to satisfy iA, = iA, and 
.X~I(A)=~o(A)\{A,}. Finally, for Ae24( with A # I  we let A* be the 
minimal proper superset of A in ~ .  

To each point x e (R2) N we will associate (uniquely for a.e. x) a 
hierarchy ~ characterized by the fact that interparticle distances within a 
cluster A ~ ~ are an order of magnitude less than the distance from A to 
any disjoint cluster. 

D e f i n i t i o n  3.2. (a) Suppose that x ~  2N and that X is a 
hierarchy. For  A e ~f~ we measure the size of A by 

r~(~"; x) = sup IxiA--xiBI 
B E Jr%( A ) 

and the separation of A from other clusters by 

RA(~f; X) = inf tx~A -- xi~l 
BE ~ o ( A * )  

B C A  
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with .R~(~; x) = oo by convention. We frequently write rA(Jf; x) -- rA, etc., 
when no confusion can arise. 

(b) Let c~ satisfy 0<c~< 1/7. Then if ~ is a hierarchy we define 
regions X~e and X ~  in ~2N by 

2"~ = {x [ rA(~4~; x) < c~Rx(~; x), all A e ~ } 

(Thus for x ~ X~  the particles form clusters described by Jr'; for x ~ X~ ,  
only these clusters are formed.) 

We now give some elementary properties of these regions. 

Lemma 3.3. For x e 2x~ and A c .9~, 

(a) r A ~ r A . ;  

(b) If l e A  then IxiA-xi l  < (1 -c~) -1 rA; 

(c) If i, j E A  then [xg-xjl ~<2(1--C~)-lrA; 

(d) I f i E A  a n d j C A  then Ix,-xjl ~>(1-3c~)(1-~)  -1RA. 

Proof. (a) is immediate, (b) follows from (a) by induction on the 
subsets of A and in turn implies (c). To verify (d) let B be the minimal 
element of Yt ~ containing i and j and let C, D E H0(B) satisfy i ~ C, j e D. 
Then since Rc,  Ro <<. Ix ic-  xi~[, 

I x , -  x j l />  I x , c -  x,~l - I x , ~ -  x~l - Ix,~ - xjl 

~> [1 -2c~(1--c~) -~ ] IXic-Xi~l 

>~ ( 1 -  3~) (1- -7) - iRA.  | 

Lernma 3.4. (a) Suppose x e X ~ J ? ~ ,  has all coordinates 
x, e ~2 distinct. Then ~ w ~4 ~' is a hierarchy and x e X ~  ~ ~ .  

(b) Each x eN 2N with distinct coordinates belongs to a unique 
region X)r. 

Proof. (a) The sets in ~ u ~ '  are nonoverlapping since if A e H ,  
B ~ ~r and i ~ A\B,  j ~ B\A,  k ~ A n B, then from (c), (d) of Lemma 3.3, 

Ix~- xjl ~< 2c~(1 -- c~) ' [ R A ( ~ ;  x) + R~(.)f~'; x)] 

and 

I x , -  x~l >/(1 - 3~)[2(1 - ~)] - ~ [RA(~ ;  x) + RB(~,'~'; x)]  

822/42/5-6-12 
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a contradiction for c~ < 1/7. Hence for A e .~, 

r z ( ~  t.3 ~'~'; x) ~ r A( g f  ; X) <<. O~RA(2/{~; x) <~ (xRA(~ kY ~ ' ;  X) 

and similarly for A e ~ ' ,  so that x e )2~ ~ ~,. 

(b) From (a) we see that (since ~'~1}= NzN) each x with distinct 
components belongs to X g  for a unique maximal ~ ,  so that x �9 X ~  uni- 
quely. | 

l . e m m a  3.5. I f x e X ~ ,  A~.)f, and B, C~oVFo(A ) with Br then 

Ix,~- X~cl >/ ~ r~(~; x) 

Proof. Let [~o(A)] =k ,  and for 2<~j<<.k consider sets D c A  which 
unions o f j  sets from ~fo(A), so that Yfw{D} is a hierarchy. Let 

is realized by 
are 
uj=infDro(~w{D};x) and suppose that this infimum 
D=Dj. I f j < k  and Ce~o(A) with Cc~Dj=~, then 

uj+~ ~< inf rDj, , c ( ~  w {D s w C}; x) 
c 

~<inf [[x~o-xi~[ + rD,(~ W {Dj}; x)] 
c 

=RDs(~fw {Dj};x)+rD,(~W {Dj}; x) (3.1) 

On the other hand, x r X)r ~ (D~I since 2 ~<j < k, from which 

RDj(OCt~ U {Dj}; X)< o~-lrDs(Jt~ U {Dj}; x) 

Thus (3.1) becomes u]+l~< [ (~+  1)/c~] us, so that u2~> [e/(c~+ 1)] k 2uk, 
which implies the lemma. | 

We next observe that the regions X z  are invariant under rotations o f  
entire clusters. Let S(0): ~2 ~ N2 denote rotation by angle 0, and for A ~ I 
define SA(O): E2N __+ N2N by 

if i(~A 
(SA(O) x)i=~XiA+ S(O)(xi--X~A), if i~A 

L e m m a  3.6. If x eX~e and A e J f ,  then SA(O) x e X ~  for any 0. 
Moreover, for any partition ~ with A c~P neutral for all P eY', 
~ ( x )  = ~(SA(O) x) [see (2.6)]. 

Proof. Let 2=SA(O)x. If the hierarchy ~'~' contains A we have 
rc(~f';x)=rc(Nf';Yc) and Rc(~f';x)=Rc(W';2) for any CeJ t f ' ;  from 
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this the first statement follows. Suppose now that, say, ~ ( ~ ) = 0 ,  i.e., 
[2~- 2;[ < d for some i, j ~  P e ~.  Then certainly O ~(x )=  0 also unless i e A, 

jCA.  But since A c~P is neutral there is a k ~ A  c~P with k r  then by 
Lemma 3.3, 

d>~ (1 - 3c0(1 - c  0 1 c~ l rA(~;x)>~ (2~)-1(1 - 3 ~ )  I x i - x ~ l  

>/Ix~-  x~l 

so that ~ ,e (x)=  0 in this case also. II 
We remark that the second statement of the lemma woutd fail if dis- 

tinct species had distinct hard core diameters or if neutral species occurred. 
This would necessitate special treatment of small clusters in what follows, 
but would not affect the results. 

Finally we introduce the further decomposition of A N needed to con- 
trol the effect of the boundary by associating to each x ~ X ~  c~ A a sub- 
family d c J r  of clusters which (essentially) cannot be rotated freely 
without some point leaving A. 

Defini t ion 3.7. (a) For  any A c I a n d  x ~ A  N define SA(A;x ) to  

be the distance from xiA to the boundary of A. Then for any hierarchy oW 
and subfamily d c H let X~o,~(A) ~ ~2N be the set of all x ~ X ~  c~ A such 
that, for all A ~ Jr 

A E d c = r A ( ~ ;  x) >1 (1 -- c~) sA(A; x) (3.2) 

(b) A subfamily d of a hierarchy H is ancestral if every superset in 
J f  of a set in in d is also in d .  

L e m m a  3.8. (a) Xg ,~ (A)  is empty unless d is ancestral. 

(b) The regions X~ ,~(A)  with 2/f any hierarchy and d ~  
ancestral partition A N, up to a set of measure zero. 

(c) I f x ~ X ~ j ( A )  and B ~ J f \ d ,  then $8(0) x ~ X o , ~ ( A )  for any 0. 

Proof. (a) If x~Xje ,~ (A)  and A ~ d ,  then 

sA.(A; x)  <~ Ix, A, -- x~l + s A(A; x)  

r A. (~4~ x) E 1 + ~( 1 - c~) - 1 ] 

= (1 -c~) -1 rA.(Jf;  x) 

so A*~ d .  Thus ~4 is ancestral. 

(b) This follows immediately from (a) and Lemma 3.4(b). 
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(c) Let Yc=SB(O)x. Now 2 i = x i e A  unless ieB. But for ieB, 
Lemma 3.3 and the hypothesis B ~ sr imply 

I ~ -  x~l <~ (1 - ~)-~ r~(~; x) < s~(A; x) 

so again :~,e A. We know 2 e Xw by Lemma 3.6, so it remains to verify 
(3.2) for 2. Since rA(d~;x)=rA(Jt~ for all A e J g, and SA(A;x)= 
sA(A; :~) unless A ~ B, (3.2) could fail only for A ~ B. But this is in turn 
impossible (since B ~ r  by (a). | 

4. P R O O F  OF T H E  M A I N  T H E O R E M  

In this section we give two estimates Lemmas 4.3 and 4.4, to be 
proved in Sections 5 and 6--and from these prove Theorem 2.2. 

We first look again at the simpler problem of the convergence of 
(2.11): for a fixed neutral partition ~ and hierarchy ~8~ consider 

fx f ~  dx2"dXN (4.1) 
.~r(xl) 

where X~(xl)  is the section {(x2,... , XN) I(X1, X2,... , XN} ~: X~f~}. For i, j e  I 
let Ai/be the minimal element of H containing i and j. Now if xeX ,e ,  
Lemmas 3.3 and 3.5 imply 

Clr A,~(H; X) <~ IXi-- X/I <~ C2r Av(~; X) 

for some 0 < Cl ~< c2 < oo.  Thus 

f ~ C  ]~ ( H  r(ff 2)E~'v) ~p~(x) 
P e ~  A e Y ~  

<~ C 1-I r] A-pa 'cB-- 2tJfl(A)l)~{ra>ga} (4.2) 

where in the first line Zij==--~_,{i, je~la,s=a) and in the second we have 
introduced the general notation 

and defined 

~A ~B-= ~ tCB (4.3) 
B ~ ~ 0 ( A  ) 

~ca=~ca(~)= E 2 -  e 2 + ~  E e(Pc~a) 2 - 2  
i ~ A  p ~  

0, if I P c~ A [ ~< l, all P ~ ~ 
(~a  ~" ( ~ A ( ' ~ )  ~--- d, otherwise 

(4.4) 
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Change variables in (4.1) by defining, for B e ~ l (A)  

Xi B = Xi  A ~- r A ~AB 

with 

(4.5a) 

max I~BI = 1 (4.5b) 
BE~.'f~(A) 

insert (4.2), and integrate over all ~AS' Thus we find that (4.1) is bounded 
by 

C I ~ f  ctrA* ~ d r N  r3A - ~  ~B (4.6) 
A ~ Lg~' 6 A F A 

where rz. = oo by convention. 
Now (4.6) is easily estimated recursively (see proof of Lemma 6.2, 

Case 1); it converges if for any partition ~ of I with ~ = ~ (or equiva- 
lently, since Ka = 0 if IA[= 1, for any subfamily ~ c ~ of pairwise disjoint 
sets) with ~ r {I}, 

~:~- ~ ~:,4 < 0 (4.7) 
A ~  

But the left side of (4.7) is 

[2 -fi- ~ e(PnA)2]-2 (4.8) 
a ~  2 p~.~ 

When the condition (2.8) is satisfied, (4.8) is negative unless there exist sets 
A c ~ with PnA neutral for all P e T .  Moreover, we see that (4.1) would 
converge if, in the estimate (4.2), •A could be replaced by KA + 2 for such 
A. Lemma 4.3 below shows that an improvement from KA to ~a + 1 can be 
achieved by summing over 7 ,  and a further improvement to XA + 2 by 
averaging over orientation of neutral clusters. 

D e f i n i t i o n  4.1. A neutral hierarchy JV" is a hierarchy in which 
each cluster is neutral. For ~ any hierarchy we let Y ( ~ )  denote the 
neutral hierarchy consisting of all neutral clusters in ~ ;  for 7 a neutral 
partition we let v ( 7 ) ( = v , ( 7 ) ) =  X ( ~ )  denote the neutral hierarchy of 
clusters A c ~ which satisfy e(A n P) = 0 for all P e 7 .  

D e f i n i t i o n  4.2. For A c I we define the averaging operator KA, 
acting on functions on ~2N, by 

(KA f)(x)= (27z)-1 f(SA(O) X) dO 
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L e m m a  4.3.  Let ~ be a hierarchy, d ~ W ( ~ )  an arbitrary sub- 
family. Then for x E X z e d  we may write 

( l-I KA) FN(fl' X)= ~ g~,-~,~(fl' X) (4.9) 
A e X(J ,~  ) \ w  

with 

[ g~.:e,d(fl, x)l ~< G~,~,o~,(fi, x) 

: C  H r A ( J ~ ; X )  laa ZA#B 2lY~l(A)lZ{rA(af;x)>>.OA} (4.10) 
A e Jg 

Here #X( ----#A(N, W)) = ~:A(2) + hA(N, SO), where 

2, if A e v ( ~ ) \ d , A # I  
n A ( N , d ) =  1, if A e v ( ~ ) ~ d , A r  

0, otherwise 

Having estimated the integrands, we may estimate the integrals. 

I_emma 4.4. Let fit ~ be a hierarchy, d c fit ~ an ancestral subfamily, 
A a disk. Then for any e' with 0 < e '<  e: 

(a) If d = ~ ,  

G~,~,~ dx='" dxx -.~ Cu 
Jg~(XI ) 

r/(, ,gf~;x)/> u 

the integral is of course independent of u for u < d. 

(b) If d r  

fx G~,~,o~dxt...dxN<CiAll ~'/2 ,if,d 

Proof of "l'hoorom 2.2. From Lemmas 4.3 and 4.4, and the Lebesque 
dominated convergence theorem, ge,~e,e is, for fixed x~, absolutely 
integrable in x2 ..... XN over X~(xi). Set 

7CN(fl) = ~" f g~,~,~ dx='"dXN 
jr162 Xw(xD 

nN is of course independent of x~. Then we write 

fANFNdx:Efx F N d X : E f  X g,~,~c,q~dx 
,,r , ~  ,ff ,,~ ~gf,~r ~,~ 
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where the sum is over hierarchies, their ancestral subfamilies, and neutral 
partitions, and we have used Lemmas 3.8 and 4.3. Noting that 

X~r,~ = {x e Xx~lx~ e A, rz(~t~; x) ~< (1 - ~) sI(A; x)} 

we have 

IApl l fA F~dx-~N 
Y 

~IAP] 12  fA dXlQfx GN'J~g~"~dx2""dXN 
r/>1 ( 1 - ~)sl 

+~fx~.~(x~)G~,~, ~ d x z ' d x u )  

p 
(1 --cL)Sl>~d 

f~ -a /p( i  ~) 
= C'~ uKp(1 - ~ ) ] - ~ ' d u  + C2 IAoI-~,/2 

where u = Ixl/p; the limit as p ~ oo is zero by the Lebesque dominated con- 
vergence theorem. | 

5. E S T I M A T I N G  THE I N T E G R A N D  

In this section we prove Lemma 4.3 by expanding FN(/~, x) in a 
generalized Taylor series (5~ in variables which scale the size of each neutral 
cluster in a hierarchy. The sum over neutral partitions N in (2.4) then can- 
cels the terms of order zero and an averaging over orientations the terms of 
order one; (4.10) then arises by bounding the remainder. 

The next definition should be read as an extension of Definition 4.1. 

Def ini t ion 5.1. (a) for ~ and ~ neutral partitions we write 
~ if ~ refines ~, and write ~ / x  ~ for their coarsest common 
refinement when it is neutral; otherwise, N A ~. is undefined. 

(b) If Jg" is a neutral hierarchy we let 7r(X) denote the neutral par- 
tition formed by all nonempty sets of the form A / Y  =-A\(UB~.Ho(A~B), for 
A e Y .  

We observe that 

~(X1) "< ~(~2) whenever ~A/~ = ~ (5.1) 
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and that if ~ is a fixed hierarchy and v = v~e, 

v(N~) c v(2~) whenever 

Speer 

r < ~ (5.2) 

The cancellations in }2~ will arise after a suitable rearrangement: 

L e m m a  5.2: For any function h(~)  of neutral partitions, fixed 
hierarchy ~ ,  and neutral hierarchies ~r X ~ ~,~, 

ProoL We claim that, for any Jg and N, (i) N/x 7c(Jg) exists if and 
only if J r  v(~), and (ii) in this case, v(N) = v(N/x re(J//)). From this the 
lemma follows, since for any 2~ with v ( ~ ) =  JV we may set ~ = N/~ 1c(Jr 
to show that 2~ occurs on the right-hand side; conversely, given .~, ~ from 
this side, v(2~)= v(~)=  ~ and moreover .~ = ~ / x  n(~/)  is determined by 
~ ,  so that N occurs only once. 

We check the claim: (i) N/x rc(J~) exists iff e(P~ (A/d~))= 0 for all 
AeJr  and P e N  iff e(PnA)=O for all such A and P iff . M c v ( ~ ) .  
(ii) v(N/x re(J/l))c v(~) by (5.2); the opposite inclusion will follow from 
(i) once we show that ( (~ /x  7t(~r rc(v(2~)) exists. But (5.1) implies that 
rc(v(2~))-< 7c(J), so that ~ / x  7z(v(~)) l-which exists by (i)] is a common 
refinement of N, ~c(Jg), and rc(v(~)). I 

This rearrangement is motivated by the following: 

Lemma 5.3. For neutral partitions ~1, ~'~2 with ~.@1~ 2 and 
P-~ # {1}, 

( - 1 )  '~k 1 ( 1 ~ [  - -  1 ) !  ~--~ 0 

{ ~ l ~  A 8 2 - & }  

(5.3) 

Proof. This is standard combinatorics. Thus by Ref. 6, Corollary to 
Proposition 3, Section 8, { ~ [ ~  >-21 } is a lattice with M6bius function 

u ( ~ , { I } )  = ( -  1 ) ~ - ' ~ ( 1 ~ 1  - 1)! 

(5.3) then follows by Ref. 6, Corollary to Proposition 4, Section 5. | 

We next introduce scaling variables for neutral clusters. Fix a 
hierarchy ~ ,  a point x s X , ,  and a neutral hierarchy Jr c J4 ~, introduce 
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real variables ( t A ) A ~  satisfying [tA]~<l, and set "CA=fIA=c~xtC, 
'CAB = VA'C~ ~ for A, B e X ,  A c B. Then we define y(x, t)e ~2N inductively 
by 

y l ( X ,  t )  = X 1 (5.4) 

y~8(x,t)=ygA(x,t)+'CA(X~--X~A ) for Ae.A/ ,BeA/ f lA)  

We collect simple properties of these new variables in the following: 

Remark 5.4. (a)  y(x, t ) l ,~_~ = x .  

(b) r A ( ~ ;  y) = 'cerA(~(f; x) [respectively RA(J~f; y) = "CCRA(~f; x)], 
where A e J(( and B e JV (respectively C e j g )  is the minimal element con- 
taining A (respectively A*). Thus y(x, t) eX~;. 

(c) For i, j �9 I let A U -- A be the minimal element JV" containing i and 
j, and suppose i e B e ~A/0(A ), j e C e ~A/0(A ). Then 

Yi -- Yj = "CA Zij 

with 

~(x,t)=x~+ ~ ~.~(x~o-x~.)-x,~ 
D~i 

D c B ,  D ~ B  

- Y, "CD*A(X,~--X,~.) (5.5) 
D ~ j  

D ~ C , D r  

Here D eJF" and D* is calculated in X .  Moreover, from y eX~e and 
Lemmas 3.3(d) and 3.5, 

jzij(x, t)l ~>(1-  3~)(1 _ :<)-l ixi_xi, . i  

, ( ~ ) u - 2  
~> (1-- 3,)(1 - -~) -  \ ~ - ~ }  rA(~f~;X) (5.6) 

I . e m m a  5.5. For ~ and xeXse  as above, a neutral partition .~, 
and A# = v ( ~ ) ,  define 

f~e(fl, x, t)= l-I ItAlnl2Z'~d f~(fl, y(x, t)) (5.7) 
A e.A/- 

Then when all x~ are dis t inctf is  smooth in t (for [tAI ~< 1, all A eJV) and, if 
J c A/', 

f~(/~,  x, t)t ,~:o,A ~ ~ = f , ~  ~ , ( ~ ) ( ~ ,  x, t) (5.8) 
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Proof. From (2.5) we have immediately 

f~ = 1-I H Izu(x' t)[ ~e'' 
Pe~ i , j e P  

i < j  

and the smoothness follows from (5.5) and (5.6). Now 
superscript to denote the set of scaling variables, so that 
y~(x, t) and y~(x, t)= y~t(y~X"U(x, t), t). Then from (5.5), 

/ [ ,A=O,A~ = H ItDI {B/2)ST~e~ 
D s JV'\Jt l  

P e , ~  A~Mr  C, D e ~ d o ( A  ) 

C~D (5.10) 

I CI = 1) and Since J C / c Y = v ( N ) ,  e(Pc~C)=O unless C e ~ \ J g  (i.e., 
similarly for D. Thus (5.10) is preciselyj~e ~ =(~)(fl, x, t). I 

We can now give the following. 

(5.9) 

let us use a 
(5.4) defines 

Proof of Lemma 4.3. We must estimate 

( H  KAiFN=~ ~ ( ( 1 ]  K A ) f ~ ) r  '~L ' ( ,~ ,  -- 1)' 

(5.11) 

where we have used Lemma 3.6. In (5.11) we w r i t e f ~ =  f~l,A~l and 

/.~ = I] [T A + (I - TA) ] f# (5.12) 
A e ,A/ \{1}  

where T~ extracts the Taylor series in t A up to order nA- 1 (and TA = 0 if 
na =0) .  We claim that when (5.12) is expanded and inserted into (5.11), 
only the term 

will survive. For any first-order term from a TA (with rt A =2) will be 
annihilated by KA [usef~e(SA(O + re) X, t) =f~(X, t'), with t~ = ( -  1) aAe t~]. 
Any remaining term is by Lemma 5.5 of the form 

H (1--TA)fZ'~(~)I'A=--I 
A ~ JV\Jr  
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for some ~ / c  Y with X{ g {I}. When we sum these terms over N with 
v(~) = JV ~ (for fixed d//), rearrange the sum according to Lemma 5.2, and 
use Lemma 5.3 and the easily derived formula O ~ ( x ) = ~  ~ ~(~)(x) for 
x eX~,e, the result vanishes unless J / =  {I} [corresponding to & =  
rc(~/) = {I} in Lemma 5.3]. 

Thus we have the decomposition (4.9) with 

g . < ~ j = ( - 1 )  I~1 ' ( l ~ a l - 1 ) ! 0 ~ ( x )  

x ( H KA) H (1-- TA)f~[,~__-~ (5.13) 
Ae~V(~)\,rg" Aev(~) \{ I}  

We write 

(1--TA)J~ltA --1= H (f~ (1--tA)~A-l dtA)(D,/)(f l ,  X, t) 
A E v(~J) 

and (5.6), 

and (5.14) follows from (5.15) and (5.16). | 

IDm,rz~jl rcl(~; x) 
- - ~ C  

Izo.[ r A(~f ; X) 

r c p ( ~ ;  x )  
<~ C (I  

p = 1 rc;(~"; x) 
(5.16) 

H 
A E ~(~)\{l} 

where Dn=-HA~v(~)(8/OtA)nA; then (4.10) will follow from (4.2) and the 
estimate 

/ rA(~; X) \hA 
](D,,fr~)(fl, x , t ) l~  C [ I  \ A*,~'~ :~,/{r~7--~;~-'} f~(fl, x, t)  (5.14) 

A E ~ U  

for all rtAI ~< 1. To verify (5.14), note that from (5.9) 

( Dm'lz':" Dmaz't~ 
DoL: E E Q, \ } L (5.15) 

k>~l m,y / = 1  

Here m = (mH, m12, m21,..., mxl, mk2) with mlr a multi-index (mlra)A~v(r  , 

mz~ r 0 for all /, and ~.r mzr = n, and 7 = (71 ..... Yk) with 
7z 6 { (i, j)  I i, j e P 6 ~ ,  i < j}. From (5.5) we see that DmS~ is nonzero only 
if 

q 

m#A = E ~ACp 
p--1 

for some chain C~ ~ C2 ~ "" ~ Cq of sets in Jg', satisfying C a ~ A o 
[notation of Remark 5.4(c)] and ie  C~ or j 6  C1. In this case, from (5.5) 
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6. E S T I M A T I N G  THE INTEGRALS 

Throughout this section we fix a hierarchy ~ ,  an ancestral subfamily 
sr ~ ~ ,  and a neutral partition r we usually omit these arguments, e.g., 
for A s ~ ,  #~ -- #A(N, ~r etc. We define 2~ ~ # A ( ~ ,  ~ )  and 

/~A = i n f  ~ #B (6.1) 
BE~ 

(similarly for ~[A), where the infimum is over all subfamilies ~ = ~ which 
partition A. Note that /s ~. 0 since #~--= 0. 

We will prove Lemma 4.4 from an inductive bound on the integral 
taken over variables associated with clusters of increasing size; thus for 
each A ~ ~(( we will integrate over configurations of the centers of maximal 
subclusters in A which (i) yield a cluster A of some maximal size r, (ii) 
satisfy hard core restriction, (iii) for A ~ ,  satisfy boundary restrictions, 
(iv) for maximal subclusters which lie in d ,  are consistent with hard core 
and boundary restrictions on those subclusters, and (v) for d ~a ~ ,  lie in A 
(recall that in Lemma 4.4 we integrate over X~,,~,=A except when 
~ '  = ~ ) .  We formalize this in the following. 

Dof in i t i on  6.1. (a) For A c ~q~ define ZA(x~, r) to be the set of 
[)ffl(A)l-tuples (XiB)B~oet, l(A) such that (i) r A==-SUpB lXiA-- Xisl ~r, (ii) 
raf f iA,  (iii) rA~(1--CQSA, ifAes~r ( iv)for BvaA. ,  [x~B-x~ ] >>.~ 1~, 
and if also Be~r [xi~--xi~l>~a-~(1--~)sB, and (v) x~EA, for all 
B~Jt~(A), if ~ r  

(b) Define inductively: 

and for A ~ ~ ,  

J{i}(x i, r)= 1 

JA(xiA, r ) = f  r~A ZA~s-ZI~1(A)I ~I J~(XiB, C~r~) 
"~z A(xiA'r) B ~ ~ o ( A  ) 

Now our inductive estimate is as follows. 

k e m m a  6.2. For A ~ ,  

J A(XiA, r)<<. Ct"A~r TM dT~E1 + log(r/d) ] m~ 

where t A -  max(s , ,  6A), with constants qA and 7A satisfying 

qA=O, if A r  or ba=O 

0 > / r / A / >  - - i  , if Ae~r  

1-I dxi~ (6.2) 
BE ~I(A) 

(6.3) 
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and 

The logarithmic power may be bounded by 

rn A < ~ ] { B e ~ t B  ~ A } ] + l { B m i n i m a l i n ~ ] B c A } l  

We have stated Lemma 6.2 in full generality, but for clarity, but for 
clarity we will first prove it in the special case s~r = ~ ,  for which boundary 
considerations are absent, and from this derive Lemma 4.4(a). We will then 
consider boundary effects. 

Prool ol Lemma 6.2. Case 1, .~ = ~ .  In this case /~e = 2B for all 
B o A  and (6.3) reduces to 

J A(XiA, r )~  Cr #~ -fix dfiA~ l + log(r/d)]m~ ( 6 . 4 )  

We argue inductively by inserting the bound (6.4) for each Js into (6,2), 
then making the variable change (4.5a) and integrating over all ~A~ satisfy- 
ing (4.5b). This yields 

fa r~A -Xa~B dr A JA ~< CdX~Pa[ 1 + log(r/d)] ~Ama (6.5) 
a rA 

Then (6.4) follows by separate consideration of the cases (i) /1A > ~A fiB, 
where fi~ = ~ A  fis, and (ii) /~  ~<~2A fiB, where fiA =gA and 6~ =d.  We 
remark that in this case the power m A on the logarithm can be inductively 
bounded by r{BeJ/FJBcA,  fiB=/2~}I. | 

Proof ot Lemmo 4.4(0). Take d = ~ ,  so aA = 2A. Then 

fX..e(Xl) G~'J/d'~ dx2""" dXN ~ frl>~ u r~-  X~.~ 2]~fPl(I)l 

rl>~ u 

• I1 [I 
A a ~0( I )  A e ,g~l(l} 

dxi A 

The inductive estimate (6.4) of JA and the same change of variables as in 
the proof of Lemma 6.2 lead to 

f G~,.x,~,~ 5 d x 2  ' "  �9 dx  N ~ C d ~'~ ;f~ r~' Z'~A[1 + log(rl/d)] Z'mA dr___~ 
r I 
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and it suffices to show that 

/LI - -  2 1 / ~ A  ~ - - ~  

Speer 

(6.6) 

But for some partition ~ of I with ~ r  

A E ~  

-< 2 
Be.@' 

e(B)=~O 

e ( P c ~ A ) 2 ] - 2  
PEt~ 

/~ e(B) 2] - 2 [ 2 - g  

by (2.8), where N ' = { A c ~ P [ A ~ , P e ~ } .  I 

We now turn to the general case of Lemma 
additional estimate. 

6.2. We need one 

k e m m a  6.3. Let Ap be the disk Ix[<. O and for x ~ A p  write 
t ( x ) = m a x { d , p - h x [ } .  For xoEA o and ~ > 0  define Ao(xo, a)= 
{xsAola>~[X-Xol>~c~-~(1-e )  t(x)}. Then if t/ and 7 are real with 
0~>q/> -1 ,  we have 

Ix- xol t(x)  d:x 

~Ccr~+~+2[1 +log(~r/d)] m, if 7 + t / + 2 ~ > 0  

<{Ct(xo)~+"+2[l+log(a/d)] m, if 7 + t / + 2 < 0  

where m = 6 , _ 1  +3~+~+2,0, and C may depend on e, t/, 7. 

Proof. We sketch a proof which, while not completely avoiding the 
consideration of various special cases, at least reduces geometric com- 
plications. W r i t e f ~  g when cf<. g ~ c - i f  for some positive c (possibly ct, q, 
and 7 dependent). We assume that p~>d, since the case p < d  is trivial, and 
without loss of generality that cr ~< 2p. 

Let r =  Ix[, a =  Ixol, and w =  [X-Xol,  and introduce new integration 
variables u = p - r ,  v = w + a - r .  The inverse mapping (u,v)~---~x is 2-1 
(or 0-1) almost everywhere and 

d2x = 2rw[ (r + a + w)(r + a - w)(r + w - a)(w + a - r)] - 1/2 du dv 
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Simple algebra shows that, in the integration region, 

O<~ u<~ ct(v + p--a)  

( 1 - - ~ ) ( v + p - - a ) < ~ w < ~ ( v + p - - a )  

r + a + w ~ r  

r + w-- a>~(1--2~)(v+ p--a)  

and 

vl <~ v <~ v2 

where vx=max{0,  d + a - p }  and v 2 = m i n { 2 a , ( 1 - c  0 ~ + a - p } .  Thus 
the integral is bounded by 

C dv du u"(v  + p - Lv(2a- v)J 

<~ C'[1 +log(a /d ) ]  & ' t~2dv(v+p-a)  -~/2+~+~ 
% v(2 v) 

(6.7) 

Now if a ~< �89 the integral (6.7) vanishes unless ~--~p (otherwise v2 < 0) 
and the bound Cp 2-~-~ ( ~ C a  2 ~-"~Ct(xo) 2-~ ~) follows from 
( v + p - a ) ~ p .  For a>~�89 we write 

The first term is bounded by Ct(xo) 2+7+" [use ( v + p - a ) ~ t  and 
( 2 a -  v),-,p], the third by C~r2+~'+"[(v + p - a ) ~ v ~ p ] ,  and the second by 
the maximum of these [ v ~ ( v + p - a )  and (2a-v),,~p]. | 

Prool of 1.emma 6.2. General case. By the proof of case l, (6,3) is 
valid for A r sO. For A e ~r we estimate inductively as in the proof of the 
special case, but now the substitution (4.5) is not appropriate, and we have 

J A <~ Cd~:~B[ 1 + log(r/d)] 5:A'~ 

X fz rY4A--ZA('S+;'~)--21~I(A)I H I~B s H dx i~  (6.8) 
A(xiA'r) BE~O(A) B e 2"~I(A) 

The integration region may be decomposed as ZA = Uc~r~(A)ZAc, where 
ZAc={XeZAIrA=pX,c--XiAf}. In Z~c we estimate integrals over each 
variable x~B, B e  9fzl(d): (i) For B r  C we must by Definition 6.1 integrate 
t~ dx~B over either the region r A >~ Ix~e-- x~A I ~ o~ ~ ~5 B or, if Be~r  over 
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Ap(XiA, rA); by the induction hypothesis q e r  is possible only in the 
second case. By direct calculation, or by Lemma 6.3 in the second case, the 
integral is bounded by 

r~ + ~[1 + log(r a/d)] (6.9) 

(ii) Finally we integrate 

tnA~:r~A-2A~-"c-"~a * 2Hcc dxic 

over either r >~ [x~-  x~A[ >~ tA or Ap(x~, r), again t/c r 0 is possible only in 
the second case. As above, and from ta, = tA, the integral is bounded by 

{ Ct?.r"~-2~7"-"~,[l +log(r/d)]b, if #A>~ZA'Z~--qa, (6.10) 
Ct~-ZA"[1 + log(r/d)] b, if #A ~< Z,~ "~B-t/A, 

We can now verify (6.3). Logarithms are collected from (6.8), (6.9), 
and (6.10); the inductive bound on ma follows since b ~ 2 and b ~< 1 if A is 
minimal in iF. To obtain r/,~, 7A, and ~A from (6.10) we consider special 
cases. If/~A = 2A [i.e., A r sr c~ v(~)  or A = I]  the three cases 2~ > ZA ~B, 
ZA~B~2A~ZA~B- -~A , ,  and Z ~ e - t l ~ , > , ~  lead to (6.3) with 
~/A = t/a,, t/~ = t/a,, and t/a = 0 (and 2A = ~,4 2a, ~ = ;tA, 2A = 2A), respec- 
tively. Similarly, if ~a= ,~a - -1  [i.e., A e ~ C ~ v ( ~ )  and A r  the cases 

lead to (6.3) with ~/~=qA., ~/~=P~--~A, and q~-------1 (and 
~,~ = ~ ~ ,  ~ = ~A ~B, ~A = 2A), respectively, | 

Finally we give the following. 

Proof of Lemmo 4.4(b). From Lemmas 6,2 and 6.3, 

;x~e G~,~,~ d X l " "  d.x N = I .  Jl(xl, 2p) dxl 
, d  ~ A p  

~< C(2p)r' dX'[l + l~ ]m' f A tT' dx, 

Cd ~' pZ'- ~'[ 1 + log(2p/d)] m'+ 1 

since t l i+Ti=#l-~r=,~i-7(~.  But from (6.6), ~ z = ~ i ~  and 
2 i -  ~[z ~< -e ,  which implies the bound of Lemma 4.4(b). | 

thus 

7. C O R R E L A T I O N  F U N C T I O N S  

We sketch briefly the application of the preceding methods to the coef- 
ficients of the Mayer series of correlation functions. Let n =  (n~,..., n s) 



Mayer Coefficients in Two-Dimensional Coulomb Systems 917 

denote a collection of particles, with n -~ Y. n" > 0; for x = (Xl ,..., x,) ~ ~2~2n 

the truncated correlation function for n particles in the volume A, with 
species' given by n and positions by x, is easily seen to have the expansion 
[compare (2.3)] 

z N  -- n i/1 Pr~(fl'z'x;A)= ~ (N--n-)! FN(fl, x) dX ,+l""dxu  (7.1) 
N ) n  N n 

N ' e = 0  

The infinite volume limit of the integrals in (7.1) may be controlled by the 
techniques of Sections 3-6. 

Specifically, we define regions X~e,~sN 2N as in Section 3, then 
estimate the integral with respect to x,+1,...,x~v over the section 
X~e,j(x~,..., x~) (which will be empty unless ~ is compatible with the 
clustering inherent in x). The only difficulty is that we cannot average over 
the orientations of clusters containing more than one particle from 
I o - { 1,..., n }. Instead, we achieve the needed falloff between neutral clusters 
containing I0 and disjoint clusters as follows: 

(i) In the equivalent of Lemma 4.3 we omit operators K~ for 
[A c~ I01 1> 2, but for each A e ~ 2 ( ~ )  with I0 c A we include an operator K~ 
averaging over rotations about xl of all particles not in A: 

f? (K'Af)(x)=(2~) ~ f[SA(O) S t ( -O)x ]dO 

(ii) We consider only volumes A=Aia  which are disks of radius a 
centered at xl,  so that the rotations K] do not interact with the boundary. 

The proof of the existence of the thermodynamic limit for the coef- 
ficients in (7.1) now proceeds as for those of the pressure. The condition for 
the existence of the limit is [-compare (2.8)] 

8~---2-sup ~ I 2 - ~ e ( A ) 2 1 > 0  (7.2) 
A ~  L L ~ 

e(A)~O 

where now the supremum is over partitions ~ of I for which I o c D for 
some D e 9 .  

Remark 7.1. The definition of Ala could easily be replaced by the 
requirement that the center of the disk stay within a bounded distance of Xl 
during the thermodynamic limit. More general limits in which, say, 
( a - I x i J ) ~ a  ~ for ~<  1 could also be treated by omitting the averaging 
operators KA and strengthening the condition (7.2). 

822/42/5-6-13 
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The estimates developed in Sections 5 and 6 will here also yield infor- 
mation on the asymptotic behavior of correlation functions. We illustrate 
with the case n = 2. 

satisfies 

Theorem 7,2. Fix x~, x2 and n = (n~,..., n *) with n = 2. Then 

( .  
pnTN(~, x2) = lim | FN(fi, x) dx3""dXN X l ,  

a ~  ')A iNa - 2  

p~N(~,X~,X2)I<~CIx~--X2] C[l+log(Ix,--x2l/d)] ~ (7.3) 

with mc as in Lemma 6.2 and with 

 74, 
-~ A ~ . ~  

e(A)v~O 

In (7.4), in contrast to (7.2), ~ runs over partitions of I which split I0: 
1 E D, 2 e D',  with D, D'  e ~ and D r D'. 

Proof sketch. Fix a hierarchy ovf, and let C~  ~ be the minimal 
element with Io c C. The key quantities in the proofs of Sections d~6 are 
g e , ~ . ~  and J~ [see (5.13) and (6.2)]; we must redefine them, and for sim- 
plicity consider only ~ = ~ ,  since terms with ~ '  r ~ vanish in the ther- 
modynamic limit, g e , ~ , ~  is replaced by g ~ . ~ , ~ ,  defined as in (5.13) but 
with 

Yi KA 
A s X ( Y g )  

replaced by 

I-I I-I K;, 
A e .Ar(Ye ~ ) A ~ Jr  

A ~6 C A~C 

Because [Id = n = 2 we are averaging over orientations for all neutral sets 
and the estimate of Lemma 4.3 is unchanged. 

For  [A c~ Io[ < 2, J'A(XiA, r) - JA(XiA, ?') is defined by (6.2). For  A = C 
we do not integrate over x2 and, moreover, we must have 

b 1 I x , - x d  ~ r c ~ b 2  Ix,-x2l (7.5) 

for some constants bl, b2, by Lemmas 3.3 and 3.5. Thus we define 

J'c(xl, x2) = Iz~(~c,~,l~ ' x21) r~C YA~B 21~'g~1(C)[ U JB(XiB ' o~rc) U dXiB 
B ~ .;,'go(C) B ~ ..'r (C)  

B ~ 2  
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with Zb the set of ( I ~ ( A ) I -  1 )-tuples (X~B)B~ ~(A/,B ~ 2 satisfying (i)-(iv) of 
Definition 6.1 as well as (7.5). For A ~ C we define JA(x~, x2, r) from 
(6.2), with J~ replaced by J~ for B e ~0(A) and with integration region Z~ 
given by ZA with the additional restriction rA i> Ix~- x21. 

Now Lemma 6.2 clearly holds for IA ~ Iol ~ 1. Then as in (6.5), 

J'c <<. CdZC~B[ 1 + l o g ( r / d ) ]  Xcme " t b21xl- x2l r~ C Xc~B clr c 2 

~bllxl -- x2[ r c  

<~ CdXC~B[ 1 + log(r/d)] mc [X t -- X21 ,c-- Zc~B-- 2 

By a further induction, for A ~ C, 

JA ~< Cd xcpB+x;'~B Ix1 --x2l ~;-zc~B 2rVA--SZA~) 

x [-1 +log(r /d)]mc[1  + l o g ( r / l x l - x 2 [ ) ]  m (7.6) 

for some m>0 ,  where D e ~ o ( A )  satisfies C o D ,  Z'A iS defined as 
Z{e~ Ze0(A)l~# D~, and/2~ defined as in (6.1) but with the partition @ restric- 
ted as in (7.2). Finally we estimate p.,r~r as a sum (over ~ and N) of terms 
Jz(Xl ,X2,  oe); the corresponding integral is convergent by (7.2) and 
satisfies 

f ~o r~'-s + log ( r / { x l - - x21 ) ]  mdrI  < . C ] x ~ - x a ]  m-x';;B (7.7) 
Xl - x2] r l  

Combining (7.6) and (7.7) yields (7.3); the resulting asymptotic power 
bound / ~ z - ~ ) / ~ - Z c  f i e - 2  is shown to be bounded by - ~  as in the 
proof of (6.6). | 
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